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Stationary dark localized modes: Discrete nonlinear Schrdinger equations
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Various kinds of stationary dark localized modes in discrete nonlinear Siclyer equations are considered.
A criterion for the existence of such excitations is introduced and an estimation of a localization region is
provided. The results are illustrated in examples of the deformable discrete nonlineadigghrequation, of
the model of Frenkel excitons in a chain of two-level atoms, and of the model of a one-dimensional Heisenberg
ferromagnetic in the stationary phase approximation. The three models display essentially different properties.
It is shown that at an arbitrary amplitude of the background it is impossible to reach strong localization of dark
modes. In the meantime, in the model of Frenkel excitons, exact dark compacton solutions are found.
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I. INTRODUCTION (hereafter the background refers to a solution of a nonlinear
dynamical problem having constant amplitude which is de-
During recent years a great deal of attention was paid tdined by the boundary conditionsSo, for example, it is well
dynamical properties of nonlinear lattices in which there exknown that the dark soltiof9] of the Ablowitz-Ladik (AL)
ists a diversity of excitations characterized by the energynodel [3] is determined by one essential parameter giving
localized in space. Considering relative displacements of thboth the width and the amplitude of a soliton, while the
neighbor sites as generalized coordinates, one can spehkight soliton is determined by two essential parameters as-
about the spatial localization of the displacements themsociated with the amplitude and the velocity of the wid
selves. Such objects have been given various names. Being The aim of the present paper is to elaborate a theory of
localized on a relatively large number of atoms, they aredark modegDLM) localized on a few atoms. We will con-
called solitons(or envelope solitons[1]. In the integrable centrate on stationary excitations which do not display for-
model one uses the name soliton in the restricted mathemativard motion. It is to be mentioned here that examples of
cal sens¢2,3]. When excitations are localized on a very few dark modes have been observed experimen{dlty. Vari-
atoms, they are called intrinsic localized modlés6]. Peri-  ous approximations for obtaining bright localized modes are
odic in time and localized in space, the excitations are alsavell elaborated. One of them is a self-consistent theory based
called breathers. The existence and stability of breathers in @n the Green-function approaghl. Mathematically, the fre-
rigorous mathematical sense, in the so-called unticontinuumuency detuning the allowed band outwards, being large
limit (i.e., in the limit when coupling between two nearestenough, allows one to consider the Green function to be
neighbors is small enoughhas been proven ifv]. The dis- localized on a few sites and to reduce the respective lattice
cussion of the relation between the intrinsic localized modesums to a very few terms. The straightforward application of
and envelope solitons can be found 8]. the Green-function method to the dark-mode problem fails
Considering the real displacements, rather than relativsince the cw frequency is detuned to the allowed band and
ones, one meets other names in the literatureki®&,s used thus the Green function turns out to be delocalized. On the
for a real solution which amplitude goes to some constants aither hand, introducing a relative displacement of two near-
the infinity. Similar solutions, but associated with integrableest neighbors results in nonlocal terms in cases when on-site
models and generalized to complex fields, are catlack  nonlinearities are included in the consideration. Another ap-
solitons[9]. The energy of dark solitons and kinks is still proach using special scaling and valid only for special points
localized in space. Although formally by passing to relativein the BZ [they are=* =/(3a) and +27/(3a), a being a
displacements one can reduce a dynamical problem with hdattice constarjthas been elaborated [8]. That approach
mogeneous nonzero boundary conditions to one with the disallows one to obtain movable intrinsic localized modes by
placement field tending to zero at infinity, properties of darkreducing the evolution equation to the AL modé&]. Al-
solitons are very different form properties of bright onesthough the mentioned approximation yields a wave packet
(hereafter this last name will be used for localized solutionswith stronger localization than the envelope soliton, it is still
subject to zero boundary conditigndhe mentioned differ- not applicable for strongly localized modes.
ence is well studied for integrable models. Speaking about physical applications of the DLM, one
One of the physical reasons for the essential distinctiortan distinguish two types of chains: the nonlinear Sehro
between dark and bright solitons is that the frequency of thelinger (NLS), like lattices, and the nonlinear Klein-Gordon
carrier wave(cw) in the former case is not arbitrafgr more  models. In the present paper we concentrate only on the
precisely, is not determined by the cw vector, which is arbi-NLS-like models. The statement of the problem as well as
trarily chosen from the first Brillouin zon@Z)]. Instead, the some general results are presented in Sec. Il. In Sec. Il we
frequency is determined by the amplitude of the backgroun@pply the theory to three particular cases of the deformable
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discrete nonlinear Schdinger equatiodDNLS) [11], to the  Eqg. (3), we get the following dispersion relatidn = Q(K)
model describing Frenkel excitons in a chain with two-levelassociated with the linear evolution af, :

atoms[12], and to the model describing the Heisenberg fer- . 5
romagnetic[13] within the framework of the stationary 5

phase approximation. In the particular case of the Frenkel "= _ZK(l_COSKH“’O_aO_ZmEzl 8m cos(Km)}
exciton lattice, we will obtain DLM in a form oflark com-
pactonswhich areexact solutionf the model, which cor-

responds to deviation of only two central atoms. -

o 2
b0+22 b,,codKm)| , (7)
m=1

Il. GENERAL APPROACH AND MODELS where

A. Statement of the problem —
_ me e | N ol ) penl )}
Let us consider a lattice having the form of a discrete an= Ja ;
NLS-like equation n+m ;=0
du — V| a ,— a
VA s R €O = VL 20): el ) ®
danim @.=0

_ ]
where in a generic situatioN[{u,,un}] is a function of

e (M=0,1,...), For the background to be stabl@(K) must be real. As is

evident, this happens subject to the conditions as follows:

—2k(1—cosK)+wg—ag—2 >, ancogKm)
m=1

(M mnf= o1 M- 15 Mns M Mt 1 Mnt1s - - 2

possessing the properties

V[{ei‘P,bLn ,e_i‘P;n}]:ei(PV[{Mna;n}] )

when g is real, and

2

, (€)

[’

> b0+22 b, cogKm)
m=1

: P - which must be satisfied for aK.
VI .. Mn—miMn—ms - - MnsmsMBnem - - -]

=V o nrm e - nems Anemi -] () C. Criterion for the existence

The condition of the stability of the background, in the
form presented above, does not give yet an explicit condition
of the DLM existence. In order to obtain it, we have to
specify the namelark localized modeln what follows it is
used for a solution of a nonlinear lattice whiekponentially
(or more rapidly tends to the background whén| goes to

(a bar stands for the complex conjugadion
The linear part of Eq(1) is nothing but spatial discreti-
zation of the Schrdinger equation and that is why in what
follows we refer toV[ ] as a nonlinear potential.
Equation(1) is subject to nonzero boundary conditions

lim w,=* pr"e xot (4) infinity. In other words, DLM are determined by the asymp-
note ' totics
Herex= *+1: it corresponds either to the centar={ 1) or to o= K"(£p+ Yo,
the boundary k= —1) of the BZ,p is a positive constant (+) Al Al
playing the role of the amplitude of the background, and the by '=.e M =N+o(e” =) at n—s*w, (10

frequency is given b =2k — wq, Where
q yisg Yorp= K™ @0 where\ . are real decrements an@l. are constantgthey

_ _-1.n n_.n can be different at- ).
wo=p Tk"V[{«"p,«"p}] (5 ) . .
Let us look for a stationary solutions of E¢L) in the
is a frequency of the underline linear lattice in the ceneter oform
the BZ (see below In what follows, finiteness ol in the

_ iw, t
limit p—0 will be imposed. pn= k"€ RelE (11)

o whereé, is a real function of the site number only. It solves

B. Stability of the background the equation
Since we are looking for the solutions of E@) localized \ \

against the background, for the first step we have to study the woén— k(26— &1~ €)= k"T({k"E}), (12

Islﬂf)z;\[itittziaobr:hty of the background. To this end we make awheref({xnfn})EV[{Kngn K".}]. As a matter of fact, Eq.

(11) will be the main equation for the next consideration.
wn=x"et(p+a,), (6) Consider now asymptotio—c (the opposit limith—
—oo can be treated similarlyand for the sake of simplicity
wherea,= a exp(Qt—iKn) anda=0(p) in Eq.(1). Linear-  restrict the consideration to the case of nearest-neighbor in-
izing the so-obtained equation with respectatpand using teractions(then f depends only or¢, and &,+4). In the
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asymptotic region one can represéptp+ ¢,,. Consider- tern, which generally speaking can be solved only by nu-
ing the limiting transitionn—oo, it is a direct algebra to merical methods. In the meantime, one can pose a question
ensure that about the region of parameters allowing strong localization
and about the number of sites to be taken into account, in
2— koot kfy 13 order to get the necessary accuracy for a gigenn this
2(1—-f) (13 section we consider these questions as well as the explicit
lattice pattern of DLM.
where (=0,1) To this end we define a “shifted” atom as an atom which
displacement is neither zero nprand consider the cases of
f= If({xn}) DLM centered on an atorftase ] and centered between two
b 0%ny | atoms(case 2 separately. Schematically the lattice patterns
corresponding to these cases are depicted in Figs-1(d),

Equation(13) determines the decrement of the DLM decay. respectively. In case 1 we use the terminology as follows: the

COShh | =

X, = Knpvxntlz Kn+1p

As is evident, for the existence of the DLM the following Noth approximation means that atomsl, =2, ... ,*n, are
condition must be satisfied: shifted while[&,/=p at[n|>n,. In case 2, theth approxi-
mation means that atoms at sitemy+1,...,0,1, ... ,ng
2— kwgy+ kfy are shifted whilg &,|=p atn>ny andn<—n,.
2(1—_fl) (14) Next, we observe that Eq12) subject to the boundary

conditions¢,,— * p asn— *= o possesses the “integral”
Requirement14) together with Eq(9) make up the nec-

essary conditions for the DLM existend@én the case of | =w(&néns1—p?) + k(énr1—En)?
nearest-neighbor interactiong hese formulas, however, are o

not independent. They both can be obtained directly from n Kf (1 e _ -0 16
Eq. (7). Moreover, for the class of the potentials considered k=§n:+1 KGN (1~ 61 =0. 18

in the present paper, requireméht) as well as its generali-
zation to the case of long-range interactions are always safhe usefulness of the preceding formula is justified by the

isfied provided that Eq9) is satisfied. fact that within the framework of thegth approximation
Indeed, let us introduce the notatiar coskK and assume each term in Eq(16) equals zero identically fon|>|ng|.

that the upper limit in the sums in E¢) is M (this means In order to discuss another important consequence of Eq.

thatM neighbors of each atom interact with.iThen Eq.(7)  (16), we introduce the namdark compactonlby analogy

can be rewritten in the form with the conventional compactonfr the solutions in which

all atoms with|n|=ny+1 in case 1 anch>n, and n<1
—ng in case 2 have amplitudes equalta.e., displacements
equal to zero. Then it follows from Eq16) that there exist
no dark compactons in the case when the nonlinear potential
whereA andz; (j=1,...,2M) are expressed through the is a linear function ofu,.,. Indeed, let us consider case 1
parameters of the problentise., through the coefficients,,  and take into account that for the solution mentioned above
andb,,). The existence of a DLM means th@j the back-  (if any) thength approximation must lead to the exact resuilt.
ground is stable andi) there exist “stationary”(i.e., corre- ~ Then it follows from Eq(16) that there must be satisfied the
spondingQ=0) linear excitations which are spatially un- relation
stable. The first requirement means that the polynomial

f({x"o ) = f({k 1, L) =K"(p— &) (1D

2M
02-Al] (z—z)=0, (15)
j=1

2M
AJHl (z=7) Subject to suppositions that, is a dark compacton, E¢17)
is an equation with respect to the only variatgﬁo. If

is positively defin.ed.for altg[— 1,1]. In that case, no roots V[ {in ,;n}] is a linear function with respect o, ; (notice
z; can be placed inside the interyat 1,1]. Thus|z|=1.0n  that the potential is allowed to be nonlinear with respect to

the Other-hand, the existence of at |ea_St one ZPONr"Ch ) Mn), then Eq(17) is a linear equa‘tion with respecté‘qo and
modulus is larger than 1 means the existence of a spatially unique solution i, =p
Ng "

unstable stationary excitation. , i
As will be shown below, dark compacton solutions are

Il LATTICE PATTERN p(_)ssible for potential®/[{w,,un«1}1, Which are nonlinear
with respect tou 1.

One of the main consequences of the above consideration We use integra(16) as a criterion for the validity of the
is that the frequency,, and hence the widttit is related to  nyth approximation, and, hence, as a criterion for the local-
NA.) of the dark localized modes are not arbitrary butization[a solution of Eq(12) solves also Eq16)]. Thus we
uniquely determined by the nonlinear potential and by thecompute a solution of Ed1) in the nyth approximation and
amplitude of the background. This means, in particular, thathen evaluate the integrlcorresponding to such a solution.
in a generic case it is impossible to reach strong localization Although the approach has a generic character, for the
similar to that in the conventional “bright” cagé] for any  sake of definiteness below the results are applied to the mod-
p. This causes a problem of determination of the lattice patels as follows.
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(b)

(d)
FIG. 1. Schematic representation of a lattice pattern in the cas

of dark localized mode centered on a sitda@tk=1, (b) k=—1
and centered between sites k=1, (b) k=—1.

(i) The deformable discrete NLS equatiddNLS) [11],

V[{/—Ln :;n}] =Vas= KnI6|Mn|2(ﬂn+l+ Mn—1) T2k (1
_6)|Mn|2/-Lna (18

which reduces to the integrable AL mod8l9] at e=1 and

to the so-called self-trapping modelet 0 («,==1 char-
acterizes the type of the nonlineayity

(i) A model describing Frenkel excitons in a chain of
two-level atoms with exchange interaction in the (8JUco-
herent state representatipt?],

2 A 2 2N
_(:U’n+1+/-‘*n),“n+1 n (-1t mn) n-1
1+|Mn+1|2 1+|/-Ln—l|2

V[{Mn v;n}] =Vg

|Mn+1|2 n |:U~n71|2
n .
1+|Mn+1|2 1"":“*n—1|2
(19

+nu

Here the parametey describes the relation between exciton-
exciton and exchange interactions>*0).

(iii) A model describing the Heisenberg ferromagnetic in
the stationary phase representatj@g],

2 2\ 2 2\
_(:Uvn+1+:u“n),U«n+l n (Mfh—1— M7 Hn-1

V[{Mn ’;n}] =Vy
:I-'|”|:“n-%—1|2 -’]-""|:U’n—l|2

1_|:U«n+1|2+ :I-_|;U#n71|2
" 1+|Mn+1|2 1"‘|:"Ln71|2
(20

+u

Here 7 is the anisotropy of the exchange.

As has been mentioned, the conventional nonlinear intrin-
sic modes are localized on a very few atg@kand this fact
allows one to employ the Green-function method in order to
estimate displacements of atoms analyticB} In case 1 of
DLM this corresponds to the first approximation, when only
three central atoms are placed out of the background and
atoms with|n|=2 are characterized by the amplitugdeThe
same approximation in case 2 correspond to only two shifted
atoms withn=0 andn=1. In what follows we concentrate
on the study of the validity of theses approximations.

A. DNLS equation

We start with the DNLS model. First, we recall that
=1/p? is a “singular” point of the mode[14]. That is why
in what follows the consideration is restricted to the param-
eters satisfying the condition

ep?<1. (21)

Consider the case 1 at,=1. By direct calculus one ob-
tains that the background stability conditit®) [and, hence,
Eq. (14)] is satisfied for anye in the center of BZ g=1)
&and fore>3 if k=—1. In the case,= —1, DLM can exist
only at the boundary of BZ and &t 3.

The results of the numerical study of the inteqtes) are
represented in Fig. 2 for case 1 in the cerf@rand bound-
ary (b) of BZ (k=1 and k=—1, respectively. One can
observe that the curves go to zero @sncreases. This is
related to decreasing the region of localization with growth
of the background amplitudéor the integrable AL model
this result can be obtained analyticall9]). Thus only in a
narrow region neaep?=1 can one consider DLM as highly
localized(i.e., well described in the first approximatjoifhe
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FIG. 2. Integrall of DNLS equation vs the background ampli- amey 9
tude(in dimensionless uniifor the centeka) and the boundargb) T T T T T T
of BZ [it corresponds to the patterns of Figga)land Xb), respec- 1k .
tively]. Solid, broken, and dashed lines correspond400.55, €
=0.7, ande=0.93. DLM is centered on a site. In all the figures, "
ky=1. é o4 e
, . =S
small background corresponds to the continuum limit. Then g el
receives a large value equal for allthe continuum limit of i‘g ' ,_d__/”/
the DNLS equation does not depend €n 3
In Figs. 3a)—3(c) we present positions of the first and 5 o4r T .
second shifted atoms computed within the framework of the § """"""""""""""
first and second approximations as functions of the back- sl )
ground amplitude. Whep—1 in Figs. 3a) and 3b) one '
observes good convergence of the approximations and a ten- ©
dency of the position of the second atom to 1. This reflects o 2 os  os o8 ; »
the stronger localization at higher amplitudes of the back- ’ amplitude of the background |

ground. In the meantime, the character of the growth of the » _ "

amplitude with the background is different in the cerffég. FIG. 3. Positions of the first atom computed within the frame-

3(a)] and on the boundarfFig. 3b)] of the first BZ. This is vyork of the fI!‘St approximatioigsolid line) and second approxima-

explained by stronger localization in the center of the BZtT"?]n (broken l'.ne fqr DLM of the D.NLS model centered ona site. .

. - e dashed line displays the position of the second shifted atom in

[see_Flg_. %)) compared V_Vlth th(_—:' one at the_ boundary._ De'the second approximation. All positions are normalized to the am-

I(_)callzatlon of the pulge, ie., 'fa'|lgre of the f|(§t approxima- i e of the background@—(c) correspond toe=0.55, x=1:

“OP for aII_p, occurs in thg V|C|n|ty of the critical poing €=0.93, k=—1; ande=0.55, k= —1. In all the figuresx,=1.

=5 [see Fig. &)]. All the figures display the same feature:

the higher the localization, the larger the modulus of theobserve qualitatively different behavior of the first atom dis-

displacement of the atomi is to be mentioned here that for placements versus background amplitude and slower conver-

obtaining the lattice pattern we always choose roots of thgence compared with case 1. The amplitude of the oscilla-

respective equations, placed between zero and the backens of a first atom is smaller when DLM are centered

ground amplitude. between sites compared with one in the case of DLM cen-
Displacements of the atoms corresponding to DLM cen+ered on a site. As in case 1, in the region near; the first

tered between two sitédsase 2 are represented in Fig. 4. We approximation fails for alp [Fig. 4(d)].
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Normalized positions of atoms
Integral |

0.15 ] 1 1 !
T T T T T 0 0.2

04 0.6
Amplitude of the background

FIG. 5. Integrall for the Frenkel exciton model vs the back-
ground amplitudgin dimensionless uniisin the center of BZ for
(a) 7=0.55,(b) =0.95. The results are given for the case of DLM
centered on a site.

and p<1, which is most interesting from the physical point
of view. In Fig. 5 we present two curves corresponding to
integral (16) for different values ofy. A peculiarity of the
figure is that at some valuep+ 0,635 for »=0.55 andp
. ~0.555 for =0.95) the integrall becomes zero. This
®) means that the first approximation gives an exact result. In
0 s ' ' . ' order to understand the behavior of the solutions in the men-
08 1 tioned cases, in Fig. 6 we present shifts of the first and sec-
ond atoms corresponding tp=0.95. From the figure one
can see that gi~0.555 the two approximations give exactly
the same resultécharacterized by the amplitude of the
displacement of the second atbiand at bigger amplitudes
08 . of the background the displacement of the second atom be-
,,,,,, e comes larger than the background amplitude.
____________________________________________________________ Thus there must exisixactsolutions of the Frenkel exci-
ton model such that only two atomsvith n==*1) are

Normalized positions of atoms

02

0.6 -

04 - 1

Normalized positions of atoms

D 1

0 0.2 0.4 06 0.8
Amplitude of the background
FIG. 4. Position of the first atom computed within the frame-
work of the first approximatiorisolid line) and second approxima-
tion (broken ling for DLM of the DNLS model centered between
two sites. The dashed lines display the position of the second
shifted atom in the second approximation. All positions are normal- 02 4
ized to the amplitude of the backgroun@—(c), correspond tae
=0.55, k=1; €=0.55, k=—1; ande=0.9, k=—1. In all the

figures,k,=1. 0 L L L
g nl 0.6

Normalized positions of atoms

02 0.4
amplitude of the background

B. Dark compactons of the Frenkel exciton model N ] o
FIG. 6. Position of the first atom computed within the frame-

Let us consider now the mode20) which describes Fren-  \york of the first approximatiorisolid line) and second approxima-
kel excitons in a chain of two-level atoms. Stability of the tion (broken line for DLM of the Frenkel exciton model ap
background essentially depends on the vajuét is estab-  =0.95 centered on a site. The dashed lines display the position of
lished in[12]). Here we restrict the analysis only to the casethe second shifted atom in the second approximation. All positions
7n<2, which corresponds to the stable backgrouna atl are normalized to the amplitude of the background.
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FIG. 7. Dependence vs 7 resulting in dark compactons cen- FIG. 8. Position of the first atom computed within the frame-
tered on a sitqa). Amplitude of a dark compacton vs exciton- Work of the first approximatiorisolid line) and second approxima-
exciton interaction(b) in dimensionless units. tion (broken ling for DLM of the Heisenberg ferromagnetic model

centered on a site. The dashed lines display the position of the

shifted. According to the definition given above such So|u_second_ shifted atom in Fhe second approximation. All positions are
tions can be identified aark compacton§15] (centered on Normalized to the amplitude of the background. Pi@sand (b)

a site a solution with compact suppfits]. The compacton ~ correspond toy=0.55 andy=0.95.

has. the.amplltL_lde of the ba_ckground fixed by the exCIton'rneantime, from the physical point of view the situation
exciton interactiory. Respective dependence is computed % hen the system is rather close to the vacuum state to
:jr;en;?ﬁitcgf tsu;?iglssp?;ﬁlo?lgrmhfz ; o:)r:a;:nigd ;(r;))mwtge the stateu,=0) is of the main interest. Respectively, below
represent the dependeneeversusn. Then the amplitude of we restrict the consideration to the range f=1.

; : L Figure 8 displays the positions of the atoms in the first
the displacement of the first atom is given by the formula and second approximations. In the figures one can see that

p(1—p?)(2+ ) for almost all <1 the first approximation fails. Moreover,
1= ) (22 as the anisotropy constant grows, the second approximation
p4(1+ 77)—p2(4+377+ 772)+3+277 fails as well (the respective integrdl becomes a growing
function). In Fig. 8b) this is reflected in the fact that all the
The dependence of the displaceméht on the exciton- functions are decaying.
exciton interactiony is depicted in Fig. ().

IV. CONCLUSION

C. Heisenberg feromagnetic model To conclude, various lattice patterns corresponding to

At <1 and arbitraryp the ferromagnetic modéR0) has  DLM (or kinks) of discrete NLS-like models have been con-
a stable background only in the center of BZ: hence in whasidered. Only in a rather narrow region at large amplitudes of
follows we deal only with the case=1. It is to be pointed the background does one observe strong localization of
out that formally Eq(20) does not result in any mathemati- modes, allowing one to treat them within the framework of
cal restriction on the amplitude of the background. In thethe approximation of only two shifted atoms. This is related
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to the fact that the small amplitude limit corresponds to the The modes studied above are static. Their dynamical

continuum limit. NLS-like models studied above possess aproperties we leave for further investigation. In this context

least one integral of motion deviation, which from zero canwe notice that compared with the case of intrinsic localized

be used as a criterion for delocalization. modes which could be movable at small enough amplitudes
Three lattices have been considered as examples. It hasee, e.g.[6]), in the case at hand one has fewer free param-

been found that they display essentially different solutionseters and thus one should not expect the possibility of di-

which depend on the type of the nonlinear potential. Therected motion of highly localized DLM.

DNLS model possesses DLM solutions at large enough am-

plitudes of the background. The Frenkel exciton model has a ACKNOWLEDGMENTS
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