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Stationary dark localized modes: Discrete nonlinear Schro¨dinger equations
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Various kinds of stationary dark localized modes in discrete nonlinear Schro¨dinger equations are considered.
A criterion for the existence of such excitations is introduced and an estimation of a localization region is
provided. The results are illustrated in examples of the deformable discrete nonlinear Schro¨dinger equation, of
the model of Frenkel excitons in a chain of two-level atoms, and of the model of a one-dimensional Heisenberg
ferromagnetic in the stationary phase approximation. The three models display essentially different properties.
It is shown that at an arbitrary amplitude of the background it is impossible to reach strong localization of dark
modes. In the meantime, in the model of Frenkel excitons, exact dark compacton solutions are found.
@S1063-651X~99!03307-3#

PACS number~s!: 45.05.1x, 63.20.Pw, 63.20.Ry, 05.45.Yv
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I. INTRODUCTION

During recent years a great deal of attention was paid
dynamical properties of nonlinear lattices in which there
ists a diversity of excitations characterized by the ene
localized in space. Considering relative displacements of
neighbor sites as generalized coordinates, one can s
about the spatial localization of the displacements the
selves. Such objects have been given various names. B
localized on a relatively large number of atoms, they
called solitons~or envelope solitons! @1#. In the integrable
model one uses the name soliton in the restricted mathem
cal sense@2,3#. When excitations are localized on a very fe
atoms, they are called intrinsic localized modes@4–6#. Peri-
odic in time and localized in space, the excitations are a
called breathers. The existence and stability of breathers
rigorous mathematical sense, in the so-called unticontinu
limit ~i.e., in the limit when coupling between two neare
neighbors is small enough!, has been proven in@7#. The dis-
cussion of the relation between the intrinsic localized mo
and envelope solitons can be found in@8#.

Considering the real displacements, rather than rela
ones, one meets other names in the literature. So,kink is used
for a real solution which amplitude goes to some constant
the infinity. Similar solutions, but associated with integrab
models and generalized to complex fields, are calleddark
solitons @9#. The energy of dark solitons and kinks is st
localized in space. Although formally by passing to relati
displacements one can reduce a dynamical problem with
mogeneous nonzero boundary conditions to one with the
placement field tending to zero at infinity, properties of da
solitons are very different form properties of bright on
~hereafter this last name will be used for localized solutio
subject to zero boundary conditions!. The mentioned differ-
ence is well studied for integrable models.

One of the physical reasons for the essential distinc
between dark and bright solitons is that the frequency of
carrier wave~cw! in the former case is not arbitrary@or more
precisely, is not determined by the cw vector, which is ar
trarily chosen from the first Brillouin zone~BZ!#. Instead, the
frequency is determined by the amplitude of the backgro
PRE 601063-651X/99/60~1!/1001~8!/$15.00
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~hereafter the background refers to a solution of a nonlin
dynamical problem having constant amplitude which is d
fined by the boundary conditions!. So, for example, it is well
known that the dark soltion@9# of the Ablowitz-Ladik ~AL !
model @3# is determined by one essential parameter giv
both the width and the amplitude of a soliton, while th
bright soliton is determined by two essential parameters
sociated with the amplitude and the velocity of the wave@3#.

The aim of the present paper is to elaborate a theory
dark modes~DLM ! localized on a few atoms. We will con
centrate on stationary excitations which do not display f
ward motion. It is to be mentioned here that examples
dark modes have been observed experimentally@10#. Vari-
ous approximations for obtaining bright localized modes
well elaborated. One of them is a self-consistent theory ba
on the Green-function approach@5#. Mathematically, the fre-
quency detuning the allowed band outwards, being la
enough, allows one to consider the Green function to
localized on a few sites and to reduce the respective lat
sums to a very few terms. The straightforward application
the Green-function method to the dark-mode problem fa
since the cw frequency is detuned to the allowed band
thus the Green function turns out to be delocalized. On
other hand, introducing a relative displacement of two ne
est neighbors results in nonlocal terms in cases when on
nonlinearities are included in the consideration. Another
proach using special scaling and valid only for special poi
in the BZ @they are6p/(3a) and 62p/(3a), a being a
lattice constant# has been elaborated in@6#. That approach
allows one to obtain movable intrinsic localized modes
reducing the evolution equation to the AL model@3#. Al-
though the mentioned approximation yields a wave pac
with stronger localization than the envelope soliton, it is s
not applicable for strongly localized modes.

Speaking about physical applications of the DLM, o
can distinguish two types of chains: the nonlinear Sch¨-
dinger ~NLS!, like lattices, and the nonlinear Klein-Gordo
models. In the present paper we concentrate only on
NLS-like models. The statement of the problem as well
some general results are presented in Sec. II. In Sec. III
apply the theory to three particular cases of the deforma
1001 ©1999 The American Physical Society
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1002 PRE 60V. V. KONOTOP AND S. TAKENO
discrete nonlinear Schro¨dinger equation~DNLS! @11#, to the
model describing Frenkel excitons in a chain with two-lev
atoms@12#, and to the model describing the Heisenberg f
romagnetic @13# within the framework of the stationar
phase approximation. In the particular case of the Fren
exciton lattice, we will obtain DLM in a form ofdark com-
pactonswhich areexact solutionsof the model, which cor-
responds to deviation of only two central atoms.

II. GENERAL APPROACH AND MODELS

A. Statement of the problem

Let us consider a lattice having the form of a discre
NLS-like equation

i
dmn

dt
1mn111mn215V@$mn ,m̄n%#, ~1!

where in a generic situationV@$mn ,m̄n%# is a function of
mn6m (m50,1, . . . ),

$mn ,m̄n%5 . . . ;mn21 ,m̄n21 ;mn ,m̄n ;mn11 ,m̄n11 ; . . .

possessing the properties

V@$eiwmn ,e2 iwm̄n%#5eiwV@$mn ,m̄n%# ~2!

whenw is real, and

V@ . . . ;mn2m ,m̄n2m ; . . . ;mn1m ,m̄n1m ; . . . #

5V@ . . . ;mn1m ,m̄n1m ; . . . ;mn2m ,m̄n2m ; . . . # ~3!

~a bar stands for the complex conjugation!.
The linear part of Eq.~1! is nothing but spatial discreti

zation of the Schro¨dinger equation and that is why in wha
follows we refer toV@ # as a nonlinear potential.

Equation~1! is subject to nonzero boundary conditions

lim
n→6`

mn56rkneivkrt. ~4!

Herek561: it corresponds either to the center (k51) or to
the boundary (k521) of the BZ, r is a positive constan
playing the role of the amplitude of the background, and
frequency is given byvkr52k2v0, where

v05r21knV@$knr,knr%# ~5!

is a frequency of the underline linear lattice in the cenete
the BZ ~see below!. In what follows, finiteness ofv0 in the
limit r→0 will be imposed.

B. Stability of the background

Since we are looking for the solutions of Eq.~1! localized
against the background, for the first step we have to study
linear stability of the background. To this end we make
substitution

mn5kneivkrt~r1an!, ~6!

wherean5a exp(iVt2iKn) anda5o(r) in Eq. ~1!. Linear-
izing the so-obtained equation with respect toan and using
l
-

el

e

f

he
a

Eq. ~3!, we get the following dispersion relationV5V(K)
associated with the linear evolution ofan :

V25F22k~12cosK !1v02a022 (
m51

`

am cos~Km!G2

2Fb012 (
m51

`

bm cos~Km!G2

, ~7!

where

am5
]V@$mn~an!,m̄n~an!%#

]an1m
U

a j 50

,

bm5
]V@$mn~an!,m̄n~an!%#

]ān1m
U

a j 50

. ~8!

For the background to be stable,V(K) must be real. As is
evident, this happens subject to the conditions as follows

F22k~12cosK !1v02a022 (
m51

`

am cos~Km!G2

.Fb012 (
m51

`

bm cos~Km!G2

, ~9!

which must be satisfied for allK.

C. Criterion for the existence

The condition of the stability of the background, in th
form presented above, does not give yet an explicit condit
of the DLM existence. In order to obtain it, we have
specify the namedark localized mode. In what follows it is
used for a solution of a nonlinear lattice whichexponentially
~or more rapidly! tends to the background whenunu goes to
infinity. In other words, DLM are determined by the asym
totics

mn5kn~6r1cn
(6)!eivkrt,

cn
(6)5c6e2l6unu1o~e2l6unu! at n→6`, ~10!

where l6 are real decrements andc6 are constants~they
can be different at6`).

Let us look for a stationary solutions of Eq.~1! in the
form

mn5kneivkrtjn , ~11!

wherejn is a real function of the site number only. It solve
the equation

v0jn2k~2jn2jn112jn21!5knf ~$knjn%!, ~12!

wheref ($knjn%)[V@$knjn ,knjn%#. As a matter of fact, Eq.
~11! will be the main equation for the next consideration.

Consider now asymptoticn→` ~the opposit limitn→
2` can be treated similarly! and for the sake of simplicity
restrict the consideration to the case of nearest-neighbo
teractions~then f depends only onjn and jn61). In the
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PRE 60 1003STATIONARY DARK LOCALIZED MODES: DISCRETE . . .
asymptotic region one can representjn5r1cn . Consider-
ing the limiting transitionn→`, it is a direct algebra to
ensure that

coshl15
22kv01k f 0

2~12 f 1!
, ~13!

where (j 50,1)

f j5
] f ~$xn%!

]xn1 j
U

xn5knr,xn615kn11r

.

Equation~13! determines the decrement of the DLM deca
As is evident, for the existence of the DLM the followin
condition must be satisfied:

22kv01k f 0

2~12 f 1!
.1. ~14!

Requirement~14! together with Eq.~9! make up the nec-
essary conditions for the DLM existence~in the case of
nearest-neighbor interactions!. These formulas, however, ar
not independent. They both can be obtained directly fr
Eq. ~7!. Moreover, for the class of the potentials conside
in the present paper, requirement~14! as well as its generali
zation to the case of long-range interactions are always
isfied provided that Eq.~9! is satisfied.

Indeed, let us introduce the notationz5cosK and assume
that the upper limit in the sums in Eq.~7! is M ~this means
thatM neighbors of each atom interact with it!. Then Eq.~7!
can be rewritten in the form

V22L)
j 51

2M

~z2zj !50, ~15!

whereL and zj ( j 51, . . . ,2M ) are expressed through th
parameters of the problems~i.e., through the coefficientsam
and bm). The existence of a DLM means that~i! the back-
ground is stable and~ii ! there exist ‘‘stationary’’~i.e., corre-
spondingV50) linear excitations which are spatially un
stable. The first requirement means that the polynomial

L)
j 51

2M

~z2zj !

is positively defined for allzP@21,1#. In that case, no roots
zj can be placed inside the interval@21,1#. Thusuzj u>1. On
the other hand, the existence of at least one rootzj which
modulus is larger than 1 means the existence of a spat
unstable stationary excitation.

III. LATTICE PATTERN

One of the main consequences of the above considera
is that the frequencyvkr and hence the width~it is related to
l6) of the dark localized modes are not arbitrary b
uniquely determined by the nonlinear potential and by
amplitude of the background. This means, in particular, t
in a generic case it is impossible to reach strong localiza
similar to that in the conventional ‘‘bright’’ case@5# for any
r. This causes a problem of determination of the lattice p
.

d

t-
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t
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tern, which generally speaking can be solved only by n
merical methods. In the meantime, one can pose a ques
about the region of parameters allowing strong localizat
and about the number of sites to be taken into account
order to get the necessary accuracy for a givenr. In this
section we consider these questions as well as the exp
lattice pattern of DLM.

To this end we define a ‘‘shifted’’ atom as an atom whi
displacement is neither zero norr and consider the cases o
DLM centered on an atom~case 1! and centered between tw
atoms~case 2! separately. Schematically the lattice patter
corresponding to these cases are depicted in Figs. 1~a!–1~d!,
respectively. In case 1 we use the terminology as follows:
n0th approximation means that atoms61,62, . . . ,6n0 are
shifted whileujnu5r at unu.n0. In case 2, then0th approxi-
mation means that atoms at sites2n011, . . .,0,1, . . . ,n0
are shifted whileujnu5r at n.n0 andn<2n0.

Next, we observe that Eq.~12! subject to the boundary
conditionsjn→6r asn→6` possesses the ‘‘integral’’

I[v~jnjn112r2!1k~jn112jn!2

1 (
k5n11

`

kkf ~$kkjk%!~jk112jk21!50. ~16!

The usefulness of the preceding formula is justified by
fact that within the framework of then0th approximation
each term in Eq.~16! equals zero identically forunu.un0u.

In order to discuss another important consequence of
~16!, we introduce the namedark compacton~by analogy
with the conventional compactons! for the solutions in which
all atoms with unu>n011 in case 1 andn.n0 and n<1
2n0 in case 2 have amplitudes equal tor, i.e., displacements
equal to zero. Then it follows from Eq.~16! that there exist
no dark compactons in the case when the nonlinear pote
is a linear function ofmn61. Indeed, let us consider case
and take into account that for the solution mentioned ab
~if any! then0th approximation must lead to the exact resu
Then it follows from Eq.~16! that there must be satisfied th
relation

f ~$kn011r%!2 f ~$kn011jn011%!5kn0~r2jn0
!. ~17!

Subject to suppositions thatjn is a dark compacton, Eq.~17!
is an equation with respect to the only variablejn0

. If

V@$mn ,m̄n%# is a linear function with respect tomn61 ~notice
that the potential is allowed to be nonlinear with respect
mn), then Eq.~17! is a linear equation with respect tojn0

and

its unique solution isjn0
5r.

As will be shown below, dark compacton solutions a
possible for potentialsV@$mn ,m̄n61%#, which are nonlinear
with respect tomn61.

We use integral~16! as a criterion for the validity of the
n0th approximation, and, hence, as a criterion for the loc
ization @a solution of Eq.~12! solves also Eq.~16!#. Thus we
compute a solution of Eq.~1! in the n0th approximation and
then evaluate the integralI corresponding to such a solution

Although the approach has a generic character, for
sake of definiteness below the results are applied to the m
els as follows.



of

n-

in

rin-

to

ly
and

fted

m-

-

th

y

as

1004 PRE 60V. V. KONOTOP AND S. TAKENO
~i! The deformable discrete NLS equation~DNLS! @11#,

V@$mn ,m̄n%#5VNLS5knleumnu2~mn111mn21!12knl~1

2e!umnu2mn , ~18!

which reduces to the integrable AL model@3,9# at e51 and

FIG. 1. Schematic representation of a lattice pattern in the c
of dark localized mode centered on a site at~a! k51, ~b! k521
and centered between sites~c! k51, ~b! k521.
to the so-called self-trapping model ate50 (knl561 char-
acterizes the type of the nonlinearity!.

~ii ! A model describing Frenkel excitons in a chain
two-level atoms with exchange interaction in the SU~2! co-
herent state representation@12#,

V@$mn ,m̄n%#5VF5
~mn11

2 1mn
2!m̄n11

11umn11u2
1

~mn21
2 1mn

2!m̄n21

11umn21u2

1hmnS umn11u2

11umn11u2
1

umn21u2

11umn21u2
D .

~19!

Here the parameterh describes the relation between excito
exciton and exchange interactions (h.0).

~iii ! A model describing the Heisenberg ferromagnetic
the stationary phase representation@13#,

V@$mn ,m̄n%#5VH5
~mn11

2 1mn
2!m̄n11

11umn11u2
1

~mn21
2 2mn

2!m̄n21

11umn21u2

1hmnS 12umn11u2

11umn11u2
1

12umn21u2

11umn21u2D .

~20!

Hereh is the anisotropy of the exchange.
As has been mentioned, the conventional nonlinear int

sic modes are localized on a very few atoms@4# and this fact
allows one to employ the Green-function method in order
estimate displacements of atoms analytically@5#. In case 1 of
DLM this corresponds to the first approximation, when on
three central atoms are placed out of the background
atoms withunu>2 are characterized by the amplituder. The
same approximation in case 2 correspond to only two shi
atoms withn50 andn51. In what follows we concentrate
on the study of the validity of theses approximations.

A. DNLS equation

We start with the DNLS model. First, we recall thate
51/r2 is a ‘‘singular’’ point of the model@14#. That is why
in what follows the consideration is restricted to the para
eters satisfying the condition

er2,1. ~21!

Consider the case 1 atknl51. By direct calculus one ob
tains that the background stability condition~9! @and, hence,
Eq. ~14!# is satisfied for anye in the center of BZ (k51)
and fore. 1

2 if k521. In the caseknl521, DLM can exist
only at the boundary of BZ and ate, 1

2 .
The results of the numerical study of the integral~16! are

represented in Fig. 2 for case 1 in the center~a! and bound-
ary ~b! of BZ (k51 and k521, respectively!. One can
observe that the curves go to zero asr increases. This is
related to decreasing the region of localization with grow
of the background amplitude~for the integrable AL model
this result can be obtained analytically@9#!. Thus only in a
narrow region nearer251 can one consider DLM as highl
localized~i.e., well described in the first approximation!. The

es
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PRE 60 1005STATIONARY DARK LOCALIZED MODES: DISCRETE . . .
small background corresponds to the continuum limit. TheI
receives a large value equal for alle ~the continuum limit of
the DNLS equation does not depend one).

In Figs. 3~a!–3~c! we present positions of the first an
second shifted atoms computed within the framework of
first and second approximations as functions of the ba
ground amplitude. Whenr→1 in Figs. 3~a! and 3~b! one
observes good convergence of the approximations and a
dency of the position of the second atom to 1. This refle
the stronger localization at higher amplitudes of the ba
ground. In the meantime, the character of the growth of
amplitude with the background is different in the center@Fig.
3~a!# and on the boundary@Fig. 3~b!# of the first BZ. This is
explained by stronger localization in the center of the
@see Fig. 3~a!# compared with the one at the boundary. D
localization of the pulse, i.e., failure of the first approxim
tion for all r, occurs in the vicinity of the critical pointe
5 1

2 @see Fig. 3~c!#. All the figures display the same featur
the higher the localization, the larger the modulus of t
displacement of the atoms. It is to be mentioned here that fo
obtaining the lattice pattern we always choose roots of
respective equations, placed between zero and the b
ground amplitude.

Displacements of the atoms corresponding to DLM c
tered between two sites~case 2! are represented in Fig. 4. W

FIG. 2. IntegralI of DNLS equation vs the background amp
tude~in dimensionless units! for the center~a! and the boundary~b!
of BZ @it corresponds to the patterns of Figs. 1~a! and 1~b!, respec-
tively#. Solid, broken, and dashed lines correspond toe50.55, e
50.7, ande50.93. DLM is centered on a site. In all the figure
knl51.
e
k-

n-
ts
-
e

-

e
ck-

-

observe qualitatively different behavior of the first atom d
placements versus background amplitude and slower con
gence compared with case 1. The amplitude of the osc
tions of a first atom is smaller when DLM are center
between sites compared with one in the case of DLM c
tered on a site. As in case 1, in the region neare5 1

2 the first
approximation fails for allr @Fig. 4~d!#.

FIG. 3. Positions of the first atom computed within the fram
work of the first approximation~solid line! and second approxima
tion ~broken line! for DLM of the DNLS model centered on a site
The dashed line displays the position of the second shifted atom
the second approximation. All positions are normalized to the a
plitude of the background.~a!–~c! correspond toe50.55, k51;
e50.93, k521; ande50.55, k521. In all the figures,knl51.
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1006 PRE 60V. V. KONOTOP AND S. TAKENO
B. Dark compactons of the Frenkel exciton model

Let us consider now the model~20! which describes Fren
kel excitons in a chain of two-level atoms. Stability of th
background essentially depends on the valueh ~it is estab-
lished in@12#!. Here we restrict the analysis only to the ca
h,2, which corresponds to the stable background atk51

FIG. 4. Position of the first atom computed within the fram
work of the first approximation~solid line! and second approxima
tion ~broken line! for DLM of the DNLS model centered betwee
two sites. The dashed lines display the position of the sec
shifted atom in the second approximation. All positions are norm
ized to the amplitude of the background.~a!–~c!, correspond toe
50.55, k51; e50.55, k521; and e50.9, k521. In all the
figures,knl51.
andr,1, which is most interesting from the physical poi
of view. In Fig. 5 we present two curves corresponding
integral ~16! for different values ofh. A peculiarity of the
figure is that at some values (r'0,635 for h50.55 andr
'0.555 for h50.95) the integralI becomes zero. This
means that the first approximation gives an exact result
order to understand the behavior of the solutions in the m
tioned cases, in Fig. 6 we present shifts of the first and s
ond atoms corresponding toh50.95. From the figure one
can see that atr'0.555 the two approximations give exact
the same results~characterized by the amplituder of the
displacement of the second atom! and at bigger amplitudes
of the background the displacement of the second atom
comes larger than the background amplitude.

Thus there must existexactsolutions of the Frenkel exci
ton model such that only two atoms~with n561) are

d
l-

FIG. 5. IntegralI for the Frenkel exciton model vs the back
ground amplitude~in dimensionless units! in the center of BZ for
~a! h50.55,~b! h50.95. The results are given for the case of DL
centered on a site.

FIG. 6. Position of the first atom computed within the fram
work of the first approximation~solid line! and second approxima
tion ~broken line! for DLM of the Frenkel exciton model ath
50.95 centered on a site. The dashed lines display the positio
the second shifted atom in the second approximation. All positi
are normalized to the amplitude of the background.
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PRE 60 1007STATIONARY DARK LOCALIZED MODES: DISCRETE . . .
shifted. According to the definition given above such so
tions can be identified asdark compactons@15# ~centered on
a site a solution with compact support!@16#. The compacton
has the amplitude of the background fixed by the excit
exciton interactionh. Respective dependence is computed
the root of the cubic polynomial~which is obtained from the
dynamical equations forn51 and n52). In Fig. 7~a! we
represent the dependencer versush. Then the amplitude of
the displacement of the first atom is given by the formula

j15
r~12r2!~21h!

r4~11h!2r2~413h1h2!1312h
. ~22!

The dependence of the displacementj1 on the exciton-
exciton interactionh is depicted in Fig. 7~b!.

C. Heisenberg ferromagnetic model

At h,1 and arbitraryr the ferromagnetic model~20! has
a stable background only in the center of BZ: hence in w
follows we deal only with the casek51. It is to be pointed
out that formally Eq.~20! does not result in any mathemat
cal restriction on the amplitude of the background. In t

FIG. 7. Dependencer vs h resulting in dark compactons cen
tered on a site~a!. Amplitude of a dark compacton vs exciton
exciton interaction~b! in dimensionless units.
-

-
s

t

e

meantime, from the physical point of view the situatio
when the system is rather close to the vacuum state~i.e., to
the statemn[0) is of the main interest. Respectively, belo
we restrict the consideration to the range 0,r,1.

Figure 8 displays the positions of the atoms in the fi
and second approximations. In the figures one can see
for almost allh,1 the first approximation fails. Moreover
as the anisotropy constant grows, the second approxima
fails as well ~the respective integralI becomes a growing
function!. In Fig. 8~b! this is reflected in the fact that all th
functions are decaying.

IV. CONCLUSION

To conclude, various lattice patterns corresponding
DLM ~or kinks! of discrete NLS-like models have been co
sidered. Only in a rather narrow region at large amplitudes
the background does one observe strong localization
modes, allowing one to treat them within the framework
the approximation of only two shifted atoms. This is relat

FIG. 8. Position of the first atom computed within the fram
work of the first approximation~solid line! and second approxima
tion ~broken line! for DLM of the Heisenberg ferromagnetic mode
centered on a site. The dashed lines display the position of
second shifted atom in the second approximation. All positions
normalized to the amplitude of the background. Plots~a! and ~b!
correspond toh50.55 andh50.95.
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1008 PRE 60V. V. KONOTOP AND S. TAKENO
to the fact that the small amplitude limit corresponds to
continuum limit. NLS-like models studied above possess
least one integral of motion deviation, which from zero c
be used as a criterion for delocalization.

Three lattices have been considered as examples. It
been found that they display essentially different solutio
which depend on the type of the nonlinear potential. T
DNLS model possesses DLM solutions at large enough
plitudes of the background. The Frenkel exciton model ha
new type of exact solutions, dark compactons. The Heis
berg ferromagnetic model does not have strongly locali
dark modes~at least in the physically relevant region of th
parameters!.
y

e
t

as
s
e
-
a

n-
d

The modes studied above are static. Their dynam
properties we leave for further investigation. In this conte
we notice that compared with the case of intrinsic localiz
modes which could be movable at small enough amplitu
~see, e.g.,@6#!, in the case at hand one has fewer free para
eters and thus one should not expect the possibility of
rected motion of highly localized DLM.
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